ERE THE UNIVERSITY OF

@ | CHICAGO

Section 9

Fundamentals of Algorithms for
Constrained Optimization

Follows N & W, section 15.

9.1 TYPES OF CONSTRAINED
OPTIMIZATION
ALGORITHMS

Types of Optimization Algorithms

* All of the algorithms solve iteratively a simpler
problem.
— Penalty and Augmented Lagrangian Methods.
— Sequential Quadratic Programming.

— Interior-point Methods.

* The approach follows the usual divide-and-

conquer approach:
* Constrained Optimization-
* Unconstrained Optimization
* Nonlinear Equations

* Linear Equations

Quadratic Programming Problems

* Algorithms for such problems are interested to
explore because
— 1. Thetr structure can be efficiently exploited.

— 2. They form the basis for other algorithms, such as
augmented Lagrangian and Sequential quadratic
programming problems.

min ¢g(x) = IxTGx +x"c
X =

subjectto a x = b;, 1 €&,

a: x > b;, 1 €T,

Penalty Methods

* Idea: Replace the constraints by a penalty term.

* Inexact penalties: parameter driven to infinity to
recover solution. Example:

x = argmin f(x) subject to ¢(x)=0 <

u * o ‘LL *
= argmin f(x Zc)i x =lm __x" =x

165 .
Solve with unconstrained

optimization
* Exact but nonsmooth penalty — the penaf

parameter can stay finite.

x =argmin f(x) subject to c(x)=0 < x =argmin f(x)+ ‘LLZ‘C

e

Augmented lLagrangian Methods

* Mix the Lagrangian point of view with a penalty
point of view.

x = argmin f(x) subject to ¢c(x)=0 <

x** = argmin f(x) Z ‘ch

ief 165

>l<_ . ‘LL,A«
x =lim, ..x"" forsome u=p,>0

Sequential Quadratic Programming

Algorithms

Solve successtvely Quadratic Programs.

min %pTka+Vf(xk)

p
subjectto Ve, (x,)d+¢,(x,)=0 ie€f
Ve, (x,)d+¢,(x,)=0 ieZ

It 1s the analogous of Newton’s method for the case
of constraints if B, =V? £(x,,4,)

But how do you solve the subproblem? It is possible
with extensions of simplex which I do not cover.

An option 1s BFGS which makes it convex.

Interior Point Methods

* Reduce the inequality constraints with a barrier

minx,s f(‘x)_tuzlog Si
i=1

subject to ¢,(x)=0 ief
c,(x)-s5,=0 iel

* An alternative, is use a penalty as well:

(¢,(x)=5) + = 2 (x))

min_ f(x ,uZlog S, o
ief

iel 2# iel

* And I can solve it as a sequence of
unconstrained problems!

9.2 MERIT FUNCTIONS AND
FILTERS

Feasible algorithms

If I can afford to maintain feasibility at all steps,
then I just monitor decrease 1n objective
function.

I accept a point if I have enough descent.

But this works only for very particular
constraints, such as linear constraints or bound
constraints (and we will use 1t).

Algorithms that do that are called feasible
algorithms.

Inteasible algorithms

 But, sometimes it s VERY HARD to enforce
feasibility at all steps (e.g. nonlinear equality
constraints).

* And I need feasibility only in the limit; so there is
benefit to allow algorithms to move on the outside of
the feasible set.

* But then, how do I measure progress since I have two,
apparently contradictory requirements:
— Reduce infeasibility (e.g. 2[e;(x)+ 2 max{~c,(x).0})
— Reduce objective function. le

— It has a multiobjective optimization nature!

9.2.1 MERIT FUNCTIONS

Merit function

One idea also from multiobjective optimization:
minimize a weighted combination of the 2

criteria.

o(x)=w, f(x)+w, |:Z‘Ci (x)‘ + Zmax{—cl. (x) ,O}}; w,w, >0

ief i€l
But I can scale it so that the weight of the
objective is 1.

In that case, the weight of the infeasibility
measure is called “penalty parameter”.

I can monitor progress by ensuring that 9(x)
decreases, as in unconstrained optimization.

Nonsmooth Penalty Merit Functions

$r(x;) = F)+p) i) +p) [c(x)]”, [z]- = max{0, —z).

rec (el

e [tis called the 11 merit function. - | Penalty parameter

* Sometimes, they can be even EXACT.

Definition 15.1 (Exact Merit Function).
A merit function ¢(x;) isexact if there is a positive scalar u* such that forany u > p*,
any local solution of the nonlinear programming problem (15.1) is a local minimizer of (x;).

We show in Theorem 17.3 that, under certain assumptions, the £; merit function
¢, (x;) is exact and that the threshold value p* is given by

p* =max{|r7|, i € EUT},

Smooth and Exact Penalty

Functions
* Excellent convergence properties, but very
expensive to compute.

* Fletcher’s augmented Lagrangian:

$e(x; 1) = f(x) = A(x) elx) + i) cilx)?,

=

Ax) = [A)AX)T]TAX)V £ (x).

* It 1s both smooth and exact, but perhaps
impractical due to the linear solve.

Augmented lLagrangian

 Smooth, but inexact.

Z Ac, +E 2 C;
* An update of the Lagrange Multlpher is needed.

* We will not uses it, except with Augmented
Lagrangian methods themselves.

Line-search (Armijo) for

Nonsmooth Merit Functions

$r(xs) = F)+p) e +p)Y [ax)],

ie& i€l
How do we carry out the “progress search™?

That 1s the line search or the sufficient reduction
in trust region?

In the unconstrained case, we had
f(x)=f(x +B"d)2-pp"Vf(x,) d; 0<B<10<p<05

But we cannot use this anymore, since the
function is not differentiable.

Directional Derivatives of

Nonsmooth Merit Function
$r(x;p) = fFx)+p) la)] +p) leix)],
= iel
* Nevertheless, the tunction has a directional
derivative (follows from properties of max
function). EXPAND

Do) p) =l O PHIZOEM a1}, p) = man (V1o Vi)

* Line Search: ¢(x..u)-¢(x, +B"pett)2—pB"D(9(x,. 1), P,);

° T]f tR 1
ust Reglon O(x,.t)— 0 (x, + B"pept) 21, (m(0)—m(p,));

0<n <05

And How do I choose the

penalty parameter?

VERY tricky issue, highly dep

penalty function used.

endent on the

For the 11 function, guideline is:

p* = max{|A7|, i € EUT]},

But almost always adaptive. Criterion: If
optimality gets ahead of feasibility, make penalty

parameter more stringent.

E.g 11 tunction: the max ot current value of

multipliers plus safety factor (]

XPAND)

9.2.2 FILTER APPROACHES

Principles of filters

* Originates in the multiobjective optimization
philosophy: objective and infeasibility

h(x) =) lei()| +) _lai(x)],

ie€ iel
* The problem becomes:

min f(x) and mxin h(x).

The Filter approach

h(x)A

h(x) A N
A\
\
\
\
\
‘\
\
\
\

(ﬁ"hk) \‘. (ﬁc'hk)

. \

isovalue of '«
. o \

' (f: hi) merit function (f; .h;)

b \

> fix) > fix)

Definition 15.2.
(a) A pair (fi, hi) is said to dominate another pair (fi, h;y) if both fy < f; and hy < hy.

(b) Aflter is a list of pairs (fi, h;) such that no pair dominates any other.

(c) An iterate xi is said to be acceptable to the filter if (fi, hy) is not dominated by any pair
in the filter.

Some Refinements

* Like in the line search approach, I cannot accept

i~
—{V
A 4 p

“RY decrease since I may never converge.

e Modification:

A trial iterate x™ is acceptable to the filter if, for all pairs (fj, & ;) in the filter, we have that

f(xT) < fj — Bh; or h(x™) < hj— Bh;, B~10" (15.33)

9.3 MARATOS EFFECT AND
CURVILINEAR SEARCH

Unfortunately, the Newton step may

not be compatible with penalty
This 1s called the Maratos

effect.

Problem:

min f(x;, x2) = 2(x] + x5 — 1) — x,

x12+x22—1=0.

Note: the closest point on
search direction (Newton)
will be rejected !

So fast convergence does

not occur

Solutions?

Use Fletchetr’s function that does not suffer
from this problem.

Following a step: Aipx + clx) = O.

Use a correction that satisfies Agpr + c(xx + pr) = 0.
pr = —A] (A Al Yelxr + pr),

Followed by the update or line search:

y Xk + px + Pr xk+Tpk+‘L'2[A?k

Since c(x, +p,+D,)= O(ka —X*H3) COmpared to c(x, +p)= O(ka _X*Hz)
corrected Newton step is likelier to be accepted.

E THE UNIVERSITY OF

¥ | CHICAGO

Section 11

Algorithms for Nonlinear Optimization.
Follows N & W, 17 and 19.

Algorithms for constrained

optimization
It 1s the story of putting ALL these blocks
together.

Augmented Lagrangian
Interior Point

Sequential Quadratic Programming

11.1 AUGMENTED
LAGRANGIAN

AUGLAG: Equality Constraints

* The augmented Lagrangian:

Lalx, A;p) = f(x)— ZA,-C,-(x) + %Zcf(x),

ief ie€
e Observation: if
A=A u=u, :VXLA(x*,A*,,u):O;

meLA (x* A ,u) = Vixﬁ(x* A ,,u) + ,LL(Vc(x*))T (Vc(x*))

AUGLAG: SOC

* So x*is a stationary point for Auglag for exact
multipliers ... but is it a minimum?

* Yes, for mu sutficiently large.

Vixcfl(x*’;t*’“)~[Yy 2]TVQEA(X*’;L*#)[Y Z_]-I',LL(VC(X*)Y)T(VC(X*)Y)Z

Z'V2 L, (x4)z *

* w4 u(Ve(x)Y) (Ve(x)Y) =0 for p suff large.

* So it 1s *almost* as solving unconstrained problem
... but how do I find multiplier estimates?

Multiplier Estimates Auglag

* At the current estimate, solve problem

0~ ViLa(xr, A% i) = V() — D [Af — peci (u) | Ve (xe).

ief

e The obvious choice:

M =2k — yei(xg), foralli € €.

* What do I do if I converge lambda but x* is not
feasible? Increase the penalty mu (it will have to
end increasing eventually).

The general case

* The bound constrained formulation. Slacks.

ci(x) >0,i €T, ci(x)—s; =0, s;=>0, forallie.
* The problem:

m}{nf(x) subjectto ¢;j(x)=0,i=1,2,...,m, | <x <u.
xeR”

The augmented Lagrangian

* The new Augl.ag

eax, 23 1) = £(0) = Y hici(0) + 5 D 2.

i=1 i=1

* The bound constrained optimization problem:

min L4(x,A;) subjecttol <x < u.
X

* Same property: if Lagrange multiplier is the optimal
one for eq cons and mu is large enough then x* is a
solution !

Practical Auglag alo: LANCELOT

Algorithm 17.4 (Bound-Constrained Lagrangian Method).
Chloose an initial point x, and initial multipliers 1%
Choose convergence tolerances 1, and w,;

Set o = 10, wy = 1/pg, and 9y = 1/

Maln fork=0,1,2,...
com putation : Find an approximate solution x; of the subproblem (17.50) such that
Use bound
) |k = P (xk — Ve Lalxi, M55 i), 1 w) | < e
constrained
projection. if f[cCe) 1< 7k
(* test for convergence *)
if [lc(xe)|l < naand ||xe — P (xc — VeLalri, A5 i), L) | < oo,
stop with approximate solution x;;
end (if)
(* update multipliers, tighten tolerances *)
AF = 2% — pe(x);
Hik+1 = Kk
Forcing sequences Mest = M/ Miias
@1 = O/ Pkt
else
(* increase penalty parameter, tighten tolerances *)
A.k_H — kk;
Mk = 1004243

M = 1Ry
k41 = 1/pis13
end (if)

end (for)

Solving the bound constrained

subproblem
* It 1s an iterative bound constrained optimization
algorithm with trust-region:

min 1d" [V2 Lk,) + pc AL Al d + Ve La(xi, 255 i)' d

subjectto [< x; +d < u, ld||lec < A,

* Fach step solves a bound constrained QP (not
necessarily PD), same as in your homework 4.

* The difference: after a subspace solve: compute the
new derivative and update TR.

11.2 INTERIOR-POINT
METHODS

Outline

* Same idea as in the case of the interior-point

method for QP.

* Create a path that 1s interior with respect to the
Lagrange multipliers and the slacks that depends
on a smoothing parameter mu.

e Drive mu to 0.

Interior —point, “smoothing” parth

* Formulation (with slacks) :

min f(x)
X.5

subject to c:(x) =0,
c(x)—s=0,

s > 0.

* Interior-point (smoothing path; mu=0: KKT)

VFikx)—A (x)y—AT(x)z =0, ce(x) =0,
Sz — pe =0, a(x) =k =0,

Barrier interpretation

* The nonlinear equation is the same as the KKT
point of the barrier function:

m

Tisn f(lx)—pn Zlogs,-
, i=1

subject to c:(x) =0,

c(x)—s5s =0,

Newton Method:

e Jinearization for fixed mu:

ViLe 0 —AJ(x) —ATX)] [P Vix)— AT (x)y— AT (x)z]
0 Z 0 S Ds Sz — pe
Ax) 0 0 0 Py N ce:(x)
A(x) —I 0 0 || p:] i alx)—s |

L(x,s,y,2) = f(x) — yTeilx) — 27 (e,(x) —).

Choose the step

e The new iteration:

- -

XU =x+aipy, ST =s5+a;"ps,

yi=y+apy, z"=z+4+ap,,
e Where:

o™ = max{a € (0,1] : s +aps = (1 — 1)s},

ma

o = max{a € (0,1): z4+ap, = (1 — 1)z},

 And,
7=0.99-0.995

How do I measure progress?

e Merit function:

E(x,s,y,z;p) = max {||Vf(x) — Au(x)"y — Ai(x) 2|, ISz — pel,
lee ()1l lle(x) — s},

* I try to decrease it as much as I can.

Basic Interior-Point Algorithm

Algorithm 19.1 (Basic Interior-Point Algorithm).
Choose x¢ and sy > 0, and compute initial values for the multipliers y, and zo > 0.
Select an initial barrier parameter ;o > 0 and parameters o, T € (0, 1). Set k < 0.

repeat until a stopping test for the nonlinear program (19.1) is satisfied
repeat until E (xg, sg, Yk, Zks k) < Mk
Solve (19.6) to obtain the search direction p = (px, ps, py, P2);
Compute a7, a7 using (19.9);
Compute (X1, Sk+1, Yk+1, Zk+1) using (19.8);
Set g1 < prand k < k + 1;
end
Choose uy € (0, o pug);
end

How to solve the linear system

* Rewriting the Newton Direction:

(V2 L
0

Ag(x)

| A(x)

0

)y
0
—1

A" (x)
0
0
0

(Vfx)— A (x)y — AT (x)z]
z—uS e

cs(x)

AIT(X)— Px
—1 Ps
0 — Dy
0 4 L—P:
r=S5"Z.

c(x)—s

e Can use indefinite factorization LDLT.

* Or, projected CG (since it is in saddle-point
form)

Linear System, part 11

* Or, we can eliminate p_s and use LDLT

C V2L OAS(x) AT N[P T T Vfx)— A (x)y — AT (x)z T
A (x) 0 0 —DPy = — ce(x)
Al(x) 0 -z | —-p; | i c(x) —pZ'e i

* And even p_z:

VI:L+ATZA AT (x)
A (x) 0

How do we deal with nonconvexity

and non-LICQ?

* Regularization

- VELH+8I 0 Ax)T AT T
0)) 0 —1
Ag(x) 0 —yl 0
A(x) —1 0 0 |

* Choose delta so that signature of the matrix
corresponds to positive definiteness of reduced

matrix: (n+m,l+m,0)

* For signature, can use LDLT

But, how do I know how far to go in

a direction?

* Backtracking search for merit function (based on
barrier interpretation) :

m

¢u(x,s) = f(x) —p) logsi +vllc(X) + vlie(x) —sll,

i=1

e (0, ay™], a, € (0, a'z“"‘],

* Directional derivative (for line search)

c(x) c clx

0 R

c(x) e(x) =1 ve ()P

[Ve(x) pl
0 otherwise

()=
dp

0
op

Ve(x)p ¢c(x)=0,Ve(x)p#0

How do we update barrier

parameter?
* Decrease of barrier (example):

Mk+1 = Okftk, with op € (0,1).

. — €k min; (s |; [2k)i
oy = 0.1 min (O 05 £ ., Wwhere & = O 2k /m
* Step update: xt=x+4a,p, st =s+aps,

yi=y+apy, 77 =z+a;p;.

A practical intertor-point algorithm

Algorithm 19.2 (Line Search Interior-Point Algorithm).

Choose xq and 57 > 0, and compute initial values for the multipliers y, and zo > 0.
If a quasi-Newton approach is used, choose an n x n symmetric and positive definite initial
matrix By. Select an initial barrier parameter & > 0, parametersn, o € (0, 1), and tolerances
€y and €, . Setk < 0.

repeat until E(xg, s, Yk, 2k 0) < €,
repeat until E (xg, s, yk, 2k: 1) < €4
Compute the primal-dual direction p = (px, ps, py, p;) from
(19.12), where the coefficient matrix is modified as in
(19.25), if necessary;
Compute af™, a7 using (19.9); Set py, = (px, ps);
Compute step lengths a;, «; satisfying both (19.27) and
v (xx + s py, sk + a5 ps) < do(xx, sx) + nas Dy, (xk, sk: pw)s
Compute (Xg41, Sk+15 Yk+1, Zk+1) using (19.28);
if a quasi-Newton approach is used
update the approximation By;
Setk «<— k+ 1;
end
Set . <— o p and updatk €,;
end

11.3 SEQUENTIAL QUADRATIC
PROGRAMMING

Idea:

* Start with equality constrained problem:

min f(x)

subject to c(x) = 0,

* Iind the solution p..li of problem with
quadratic objective and linearized constraints
called quadratic program.

min - fi + Vi p+3p" Vi Lep

subjectto Agp +cx = 0.

* Detine: 4., =l;x,, =x+p, which gives Newton’s.

Extension to inequality constraints.

e For problem: min f(x) subjecttoci(x) =0, 1i€f&,
C,'(.X) >0, 1.

* Solve successtvely the quadratic program:

min - fi +Vfip+3p Vi Lep
subjectto Vg (xk)Tp +ci(x) =0, €€,
Vei(x))'p+cilxg) >0, iel.

* E.g use a BFGS approximation (though density
an issue) and interior point (defined in section

10).

A sequential Linear-Quadratic

Program

* Analogous with the projection/subspace

minimization algorithm.

* In Linear phase, solve (e.g by interior point)

e Variation:

(infeas)

. 1
min fi + V£ p (+5pr)
subjectto ¢;(x;) + Ve;(x)Tp=0, i€&,

ci(xg) + Vei(x)'p=0, ieZ,

IPlle = AY,

min
p

subject to

def

LW(p) = i+ VI P+) leilx) + Veix)" pl

ief
+ i Z[Ci (xk) + Vei(xe) " pl~
=
IPllec < AY.

Determine active set in linear phase

For teasible algorithm:

Ac(p®) =i € £ | ci(xx) + Veilxp) " p¥ =0} U {i € T | ci(xx) + Vei(x)" p~* = 0).

pC

* For infeasible algorithm:

Vi(p™) ={i € €| ci(xx) + Vei(x)" p* # 0} Ui € T | ci(xx) + Vei(x)" p* < 0).

Backtrack merit function onpto obtain Cauchy pt »°

def

1
4u(P) = fi + VI p+ 5" Vicep + 1 Y lei(x) + Vei () pl +1) leilxi) + Vei(x) p] ™

ief i€l

Equality Constrained QP: EQP

* Determine the working active set:

W, < Afor V)

* Solve EQP:

T
min fi +1p' Vi Lip + (ka + 1k Z viVei (xk)) p

subjectto ¢;(xx) + Vei(xx)Tp=0, ie&ENW,
ci(xi) + Veilx) ' p=0, ieInW,
Pl < A,

* E.g by truncated, projected CG.

Total Step

* Start from Cauchy Direction:
pr = p" +a(p® — p°),

* Choose «? by backtracking using the same
merit function as in first stage. (etfectively, a

dogleg).
e If the LP solution is infeasible, increase the
penalty.

